DEPRESSION

Depression Database

 More than 3,000 patients diagnosed with clinical depression,

 $\square > 250,000$ assays of blood and urine,

 50 to 150 symptoms or traits recorded for each patient.

Database Studies

A wide range of abnormal chemistries and behaviors were observed in the depressive population.

5 chemical classifications (phenotypes) were identified, representing 95% of depressives.

Distinctive symptoms and traits were identified for each depression group.

Chemical Classification of Depression

38% Undermethylation

20% Folate Deficiency

17% Copper Overload

15% Elevated Pyrroles

5% Toxic Metal Overload

Implications of Database Findings

 Depression is a name given to a variety of different mood disorders.

 Each depression phenotype has unique chemical imbalances and symptoms.

 Different treatment approaches are needed for these disorders.

A 25-Year Mystery!

□ Folic Acid is a very-effective methylating agent.

 Undermethylated depressed patients are intolerant to folates.

Overmethylated depressives thrive on folates.

WHY?

Mystery Solved by Epigenetic Science

 Folic Acid generates acetylase enzymes that alter histories & promote expression of SERT.

 SERT increases serotonin reuptake, thus reducing serotonin activity.

For low-serotonin depressives, the harmful impact of folic acid at the synapse exceeds the benefits of normalizing methylation.

Epigenetics of Methyl and Folate

 SAMe modifies histones to block production of transporter proteins: This reuptake inhibition increases activity of serotonin & dopamine.

 Folates have the opposite effect on histones and lower serotonin and dopamine activity.

Nutrients That Increase Serotonin Neurotransmission

S-Adenosyl Methionine (SAMe)

Methionine

Tryptophan

□ 5-HTP

Nutrients That Decrease Dopamine Neurotransmission

□ Folic Acid

Niacin or Niacinamide

DMAE or Choline

Manganese

Nutrients That Decrease Norepinephrine Neurotransmission

GABA

Folic Acid

Niacin or Niacinamide

Pantothenic Acid

Zinc

Five Depression Phenotypes

- 1. Undermethylation
- 2. Low Folate
- 3. Copper Overload
- 4. Pyrrole Disorder
- 5. Toxic Metal Overload

Phenoptype #1 Undermethylated Depression

Elevated Blood Histamine

Low SAMe/SAH Ratio

Low Basophils

Low Serotonin Activity

Symptoms & Traits Undermethylated Depression

- OCD tendencies
- Seasonal affective disorder
- Competitive & perfectionistic
- SSRI medications usually effective
- Calm exterior, but inner tension
- Strong willed
- □ High libido
- Seasonal allergies

Useful Nutrients Undermethylated Depression

- SAMe
- Methionine
- Calcium
- Magnesium
- □ Zinc,
- □ Trimethylglycine (TMG)
- □ Vitamins B-6, C, E
- Inositol

Phenotype #2 Low-Folate Depression

Low Serum Folates

Low Blood Histamine

Elevated SAMe/SAH Ratio

Elevated Dopamine & Norepinephrine

Symptoms and Traits of Low-Folate Depression

- □ Tendency for high anxiety, panic
- Non-competitive in sports or games
- Absence of inhalent allergies
- Food/chemical sensitivities
- Adverse reaction to SSRI medications
- High musical or artistic ability
- Underachievement
- □ Sleep disorder
- □ Low libido

Useful Nutrients For Low-Folate Depression

- Folic Acid
- □ B-12
- GABA
- DMAE
- Manganese
- Niacin or Niacinamide
- □ Vitamins A, B-6, C, E
- Zinc

Phenotype #3 High-Copper Depression

Elevated Serum Copper

Insufficient Serum Ceruloplasmin

Zinc Depletion

Low Metallothionein Activity

Elevated Norepinephrine & Adrenaline

Norepinephrine Synthesis

DOPAMINE

NOREPINEPHRINE

Symptoms and Traits of High-Copper Depression

- More than 95% are female
- Inability to eliminate excess copper
- High anxiety
- Tendency for post-partum depression
- Onset during hormonal event (puberty, birth control, pregnancy, menopause)
- Estrogen intolerance
- Tinnitis (ringing in the ears)
- Sensitive skin, intolerance to cheap metals.

Useful Nutrients for High-Copper Depression

- □ Zinc
- □ Vitamin B-6
- MT-Promotion Nutrients
- Manganese (avoid if undermethylated)
- Selenium
- Vitamin C
- Vitamin E

Decoppering Protocol Issues

The excess copper departs via the blood stream.

 Gradual introduction of zinc is recommended to minimize copper elevations in blood & increased irritability and anxiety during early treatment.

Zinc dosages should be increased to tolerance.

Depression Phenotype #4 Pyrrole Disorder

Elevated urine pyrroles

Zinc deficiency

□ Vitamin B-6 deficiency

Severe oxidative stress

Low serotonin & GABA

Pyrrole Depression

- Severe mood swings
- Poor stress control
- Extreme anxiety
- Poor short-term memory, reading disorder, absence of dream recall
- Sensitivity to light, noise
- Poor immune function
- Very poor morning appetite
- Abnormal fat distribution,
- Inability to tan.

Treatment of Pyrrole Disorder

Zinc Therapy

□ Supplements of B-6, P-5-P

Omega-6 (Primrose Oil, Borage Oil)

Biotin

Toxic Metal Depression

- Absence of trauma or emotional triggers
- Abdominal distress
- Unrelenting depression
- Cognitive deficits (children only)
- Metallic taste in mouth, bad breath
- Irritability, anger
- Food sensitivities
- High oxidative stress

Useful Nutrients: Toxic Metal Depression

- □ Zinc
- Manganese
- Glutathione
- Selenium
- MT-Promotion Nutrients
- Calcium (lead poisoning)
- Vitamin C
- Vitamin E

LEAD LEVELS IN BEETHOVEN SAMPLES

Open-Label Outcome Studies

□ 20% non-compliance rate

 85% of compliant patients report improvement and reduced medication needs

Many reports of zero depression without medication support.

Treatment Time Frames

- □ Pyrrole Disorder: 1-4 weeks to achieve full effect.
- Copper Overload: No progress until week 3; 60-90 days to normalize blood Cu levels.
- Low Folates: Clear improvement by week 4; 3-6 months to achieve full effect.
- Undermethylation: No progress until month 2; 6-12 months to achieve full effect.

THANK YOU!

William J. Walsh, PhD
Walsh Research Institute
www.walshinstitute.org